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Abstract—In this paper, exact expressions for the stresses and the displacements in an infinite elastic solid
containing two spherical inclusions are presented when an arbitrary linear strain field is applied at infinity.
Owing to the linearity of the elasticity problem, the general solution can be obtained by superposing the
stresses and displacements that result from the application of four independent strains at infinity. Two of
these cases lead to axisymmetric solutions which are evaluated for elastic particles, while the remaining are
solved only for rigid inclusions and cavities.

The analysis is based on the Boussinesq-Papkovich stress function approach and makes use of the
“multipole expansion” technique in which the solutions are expanded into series of spherical harmonics
with respect to the centers of the two spheres. The solutions thus obtained converge very rapidly when the
spheres are more than three radii apart, but become slowly convergent as the separation decreases.

Numerical results are presented in graphs for the stresses along the center-line between two cavities and
between two rigid spheres. In the latter case, the displacements of the rigid particles are also calculated.

[. INTRODUCTION

The equilibrium problem in the theory of elasticity for a region containing two spherical
inclusions of the same size is of technical interest because its solution demonstrates the
interference between two sources of stress concentration. Since, as will be seen below, the
complete analysis for an arbitrary strain field applied at infinity is rather complicated, previous
studies have been restricted to the axisymmetric problems for an infinite region containing
either cavities or rigid particles[1-4]. The only exception appears to be a recent paper by
Tsuchida et al.[5] who solved the problem when the applied field consists of an uniaxial tension
in the direction perpendicular to the line of centers of the cavities.

Two standard methods have been developed for treating two-sphere problems. The first is in
terms of bispherical (spherical bipolar) coordinates and was used by Sternberg and
Sadowsky (1] for cavities and by Shelley and Yu{2] for rigid spheres under hydrostatic tension
or under an uniaxial tension along the line of centers of the inclusions. The second, employed
by Miyamoto[3.4] for cavities under uniaxial tension along their line of centers and recently by
Tsuchida et al.[5} in the article referenced above, is the “multipole expansion™ technique in
which the solutions are expanded into series of spherical harmonics with respect to the centers
of both spheres. A comparison of these two methods shows that the former requires the
numerical solution of a set of infinite linear equations for each separation distance between the
spheres which, in the past[1,2], was accomplished by truncating the infinite set of equations. In
contrast, the latter method requires the derivation of recurrence formulae for relating the
coefficients of the spherical harmonics. Although such an approach also leads to an infinite
series, the solution can be expressed explicitly as a function of the separation distance and can,
in principle, be evaluated numerically to any desired degree of accuracy by retaining the
appropriate number of terms. Consequently, this second method appeared to be more suitable
for treating the present problem.

In this paper, we shall generalize the earlier results referred to above and shall consider the
problem of an infinite elastic solid containing two spherical inclusions of the same size in the
presence of an arbitrary but constant applied strain at infinity. Owing to the linearity of the
problem, the solution for this general case can be obtained by superimposing the solutions for the
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following four independent applied strains:

(a) €; = &y (b) €; = 8)18; + 81282 — 281183,
(C) G;j = 5“6,'2 + 5,‘25,’[. (d) 6ii = 8128i3 + 8i35i2s (la_d)

where the x;-axis is along the line of centers of the spheres and 6; denotes the Kronecker delta.
Of the four strains, the first two result in axisymmetric problems which will be solved for the
general case of two elastic spheres in an infinite region. However, (c) and (d) are more
complicated and their solutions require a great deal of effort. We shall, therefore, examine in
detail the two limiting cases in which the spheres are either rigid particles or cavities. The
method of solution will be presented for these applied strains in Sections 3-6.

As shown in a paper by Chen and Acrivos[6] and in Chen’s thesis{7], the solutions of the
above problems are needed for the determination of the bulk stresses in a composite material
containing spherical inclusions in sufficiently large concentrations for particle-particle inter-
actions to be important. This paper is thus intended to provide information about the interaction
between two spheres embedded in an infinite domain, with a view to its use in [6] for the
evaluation of the stresslet S;;, defined by

Sy = f (Xouht — AoliBy; — po(uin; + uing)) dS,
SF

where S, denotes the surface of the particle in question and #; is its unit outer normal, and for
the calculation of the effective elastic moduli of such a composite material. We shall now
proceed with the outline of the method of solution.

2. STRESS FUNCTIONS AND METHOD OF SOLUTION

The coordinates of the two-sphere system are illustrated in Fig. 1. The spheres are both of
radius a and their centers are located at O(x,y,z) and O,(x,,y,.z}), respectively. 2z, is along the
line of centers of the two spheres and the distance between the centers, O0,, is denoted by R.

Y

Fig. 1. Coordinates for the two-sphere system.
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The two sets of coordinates, one for each sphere, are related by
X=Xy, Y=y, z=23+R

In terms of the spherical coordinates, we have

X = rsinf cosa X, = r; sinf, cosa
y = r sind sina y1 = ry sinf; sina
z=rcosf zZ; = rycosé,

where 0<r, r,<w0, 0<6,0,<m0<a<2w
The general solution for the displacement equations in the absence of body forces,

%u; a’u;
— - LI
axax T2 gy, =0 2

san be represented using the Boussinesq-Papkovich stress functions [8] as

AL SR
2}1. U = 0x,-+x" aXI (3 4V)T,
W AT g
= axi+ ax, 41 - v)1; (3)

where V2 = V?7, = 0 and » is Poisson’s ratio of the medium. For the two-sphere system, «,, u,,
v, and x, , u, v, will denote the bulk modulus, shear modulus and Poisson’s ratio of the
surrounding medium and of the particles, respectively. Once u; has been obtained, the
associated stress fields can then be determined from Hooke's law.

It is well known[9], that, of the four harmonic functions given in (3), only three are
independent. The advantage of retaining all of them is that we can arbitrarily either eliminate
one or combine two of them to handle particular cases. When the problem is axisymmetric,
only two functions are needed[8], namely ¢ and 73, with x; being the axis of symmetry.

The boundary conditions that have to be satisfied are that, as |x;| =, the displacement field
has to approach that of the corresponding loading and that the displacement and the traction be
continuous on the surface of each inclusion. In addition, for the case of rigid particles, whose
displacement and rotation need to be determined as part of the solution, we require that the
total force and couple acting on each inclusion be zero.

We shall now proceed with the solution to our problem for the four applied strains, {1a-d).

3. AXISYMMETRIC SOLUTION FOR €} =4;
With the strain given at infinity as €} = §;, the corresponding displacement and stress fields
are

and
0’,7 = 3K08,‘,‘,

where x% is taken from the midpoint of the two centers of the spheres. In spherical coordinates
with origin at O, the center of one of the spheres (see Fig. 1), the above become

u>=r- % cosh, uy = % sinf, u, =0, (4a)

and

£

x o« ® o o«
O =0g = Oga = 3Kov O~ Org = 0ga =V, (4b)
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As mentioned in the previous section, the solution to this axisymmetric system will involve
only two stress functions ¢ and 7; which depend only on r and 8. The displacement field can
therefore be represented as:

(a) Outside the spheres
2pou = 2uou” + grad £ + grad (2 + z4) — 4(1 — vo) (¥ + Yy de, (5)

o n+3 n+3
=§_‘,0{ n n+.P (cos8) + A,' anHP(cosO.)}

n+’ n+2

Z g ,.+| P,(cosb), Z C' s i1 Palcost,

where P,(cos 8) is the Legendre Polynomial of order n with argument cos 8 and a is the radius
of the spheres.

(b) Inside sphere O
2u,u = gradn + grad(z€) — 4(1 - v, )ée. (6)

where
2 _,P {cosf); 2 e P,(cos9).

An expression similar to (6) applies for the region inside sphere O,. The relations between the
harmonic functions referred to each of the two spheres are given by Hobson[10],

P”’(COSO) - (5+n)' rls _i\ywtmpm
rn+l Yz;" (s + m)’(n _m)' Rs+n7f( 1) PS (COSG‘) (7a)
and
P (COSBJ) - (s +n)' rS — n+m m
ST = B S i R P (cosh), (7b)

forO0<r,, r<R.
In order to satisfy the boundary conditions at the surface of sphere O, eqn (5) should be
expressed in terms of the (r, 8, @) coordinates. By using z, = 2+ R and (7), we obtain

2uott = 2uou” + grad(¢ — R ¢) + grad [z(¢ + )] — 41 — vg) (¢ — ¢))e. (8)

and

6 n+3 L

{— Ry, = 2 {A,, Er"_*_' P,(cos8) + (A,'a - RC,Ha""? z 8us(— l)"r’Ps(coso)}
n=0 s=0
g+y = 2 { ' a,,+, P,(cos8)+ C,' "“E gns(— D"r* Ps(cose)}
s=0

where

_(s+n)!

= ~(s+n+1)
ns =TT R ‘
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The displacement and stress fields corresponding to (8) in spherical coordinates become then

U n+l n+3 ‘n+4-4y
u,=u,+—2{—A"( )a P,-C, *‘—E;IT—]—_O

X{(n + 1) Pasr + 1 Pacy]+ (A, a—RC,,)a"”ZgM(—l)" SLs P+ C,' a"*?

S"3+4V0

stogns(—_l)r 25+ 1

[(s+1) Py + sP.H]}

Sin0 e an+3 an+2 1
Up = tty” =5 > { Ap S5 Po+ Co Sy s
[} @ 2#0 n=0{ n rn+ n n rn+t 2n+1

X[(n = 3+ 4v) Pay +(n +4—4vg) Pi_ )+ (A'a — RC,) 0" S, go(— 1)'r* "' P, + G, 0™
s=0

= 1 ;
X 3, gl = 1P 5o (5 =3+ ) Py s + 4= o) Py} ©
5=0

U, =0

and

'H—

T 0',,+2{A (n+1)(n+2)—,,+—5P +C,,T+72n-:_ll

X[(n+4—4v)nPy_y+(n*+50+4-2p) Priil+(Aa~RC) a

5= n+ nos— s
XZg,,S(—l)s(s—l)r 2p.+Chla 2Zg..s—l) ‘2 —

X [(s2—3s —'2V()) PS—|+(S + 1)(5 —3+4V0) Ps+1]}

n+ n+2 1

Ty = 0',9+Sln02 {A (n+2)mP' +C,.—,,:2'2n+1

X [(n® +2n—l+2vo)Pﬂ+(n+1)(n+4 dv) Pr_\1-(A'a~RC) a

2 r - 1"s - )P, - C,’ a"”Zg,sst(( "3+4vo)sP;+|+(s2—2+2V0)P;_,]}

O = 0. (10)

Similarily, we obtain the expressions for the displacement and for the stress fields inside sphere
O,

n

up =513 {0, T2 (ot VP Py B, P, }

2[‘-pn=0

- sinf <« r ) ) "o
uf' = 2, "ZO{D e ‘2n+1[(n 3+4p) Pr+(n+4—-4p,) P\ 1+ B,l-l-]—,,—:iPn}
ug:)__.o . (11)

and

@ n—1 2 n—2
W) n(n+1)(n—3+4y,) n(n“~3n-2v,) ] nin-1)r }
oy = ZO{D,. a"“[ Sn Tl P+ P P, |+B,——=— P,
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n 1 n—

o0 = — sind 2{ e ,2n1+1[(n—3+4vp)nP;H+(n2—2+2v,,)P;_.]+BZ ;(n—I)P’}
(12)
o =0.

The expressions for the remaining stresses, which are not shown here, have been derived by
Chen[7]. From the definition of the stresslet S; and the exterior solution, we can then easily
calculate that, for a sphere of radius a,

dmra’(1 -
1= 0 g+ Co (b + Badi+ (= 4v)didy)] (13a)
and
3 pa—
S,’,' ZM(3AQ+(5_4VO)C1). (I3b)

1_21/0

Since the loading, given by (4), is symmetric both with respect to the axis of symmetry of the
two spheres and, for equal sized spheres, to the plane of symmetry perpendicular to this axis, we
have that A, = (- 1)"A,' and C, = (-~ 1)"*'C,". The two-sphere problem then simplifies to that of
finding the unknown coefficients A, and C, by satisfying the boundary conditions at the surface of
sphere O.

Substituting the exterior and the interior solutions (9)-(12) in the boundary conditions
involving the continuity of displacement and traction, and using the orthogonality of the
Legendre polynomials, we can obtain a set of relations for the coefficients Ay, B,, C, and D, {7].
However, since the calculation of the effective bulk modulus x* involves only S;[6] which
depends only on A, and C,, we eliminate the interior coefficients B, and D, and obtain

Aot

5—4 2 - 5+2
3 Yo C,=2p.0y,+§(l—2vo)‘y,Z()Cs(s-é—l)p‘ 2

and for n =0
Ap = 21071850+ E a* " {(Asa + RC,) (Migen + Maa’gsns2)
s=0

= Cs (Msgyn-iy+ Ma@’gonan + Msa'gne)} (14a)

- ZO a*™""! {MG(Asa + RC)gsn+1™ C(Mog,, + Msazgs(,.+z>)}. (14b)

8§

where p=(alR), y(3x, —3ko/3k, + 3p0), gus = ((s +n)!{s'n?) R7“*"*Y and all of the M;’s are
given the Appendix. The above linear equations can then be solved by expanding A, and C,
into power series in p, and obtaining a recurrence formula for the appropriate coefficients. For
reference, an example of this method is also illustrated in the Appendix. The first few terms of
the coefficients are

At=2+ S(I-B)5—4w) 5 [50(1“3)(5 4Vo)(2‘“Vo)
2B(4 = Svp)+ (7 — Swp) [2B(4—5wy)+(7- 5Vo)]
20(1 = w) (1 — 2py) ]6 8
BG—Sw)+ (T —svg) V'[P TP

A% = 28(3_2V0)(1"B) p4+0(p6)

23(11 - l4V0)+(13_7V0)

n(n—l)(2n—l)(1~B)
[B(n—1)(3n +2—dnvo—2vo) + (N + n+ 1 - 2nve—voll ¥

Aﬁ n+1+0(pn+3)
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and

CE=0

t=250 —155 if) T (17) S’ T+ [2ﬂl(i0£15;ol);f((27_— 1;030)12 o+ 0p")

O =" BaGn+5- 4nn(3: —+6lul)(in(;zll e e e A
where

A% = Adf(poy), C* = Cil(poyand 8 = i"p/ﬂo-

4. AXISYMMETRIC SOLUTION FOR €} = 8,8,/ + 8126, — 26136
The displacement and the stress fields corresponding to the above strain at infinity are (with
x¥ taken from the midpoint of the two centers of the spheres)

ui = xt8i + x38;,— 2x16;
and
o5 = 2o( 8181 + 8182 — 28:38p3).
Since the system is also axisymmetric, the method of solution is exactly the same as that given in
Section 3, the only difference being in the field applied at infinity. The solutions for the
unknown coefficients A, and C, are therefore similar to eqns (14a, b) except that the terms
before the summation signs are Suo(S — 4vg)y26n0+ 6p0y28,2 in the equation for A, and

—15u0728,1 in the equation for C,, where y, = (8 ~ 1)/[28(4 — Svy) + (7 — Swvp)]. The first terms of
the coefficients become then:

Co+=0

1500-8)2-v)) 5 540(1-8) s
2BG—-Sv)+(1~500)" “2B@A=Swe)+(T— 5w

+[9007,%(2 — wo) (1 = wg) = 150(1 — 2w0)y1721p° + O(p®)

B 5(1-B)nn +3)(n+2) (3n + 5 —4uy)
T 2[Bn(3n —4nvy+ 5 —6wg) + (n’+ 3n + 3 —2nwy— 3]

C|+=—‘15+

C,|+ pn+2+ O(pn+4)

and

50(5—4vy) 2—vy) (1-B)
28(&—Svg)+ (71— Sw)

A" = 5(5—4wo) + [- = 20y,(1- ZVo)]f +0(p")

A= O(PA)

60(8 — 1) (2 o)
2ﬂ(4" SV()) + (7 - 5V0)

_ 5(1=B) (n— Dn(n +1) 3n +2— 4w,
AB(n— 1) Bn—A4nve+2— 2w+ (N2 + n+ 1-2nve— o)) ¥

A =6+ p*+0(p°)

A"+ = n+1 + O(pn+3)

where

AL = A(ey2) and C, = Col (poy2).

5. ASYMMETRIC SOLUTION FOR €} = 8,82+ 825,
The corresponding displacement and stress at infinity are

u” = x§8; + x18;
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and
0,;; - 2“0(8“8;3 + 6,’28}1)~

Transforming to the center of sphere O in spherical coordinates yields the displacements

U= =L Py (cos) sin2a

3
iy =— rsing P¥sin2a (15a)
iy 3s1 7 ——— Py* cos2a
and the three stresses in the radial direction
2p, posing 5, .
o= 3 P1 sin2a (T,g —3“‘P2 sin2a
(15b)

Ora = 3 n8 Pycos2a

where the P,”"s are the associated Legendre polynomials and P,"'(x) = dP,"(x)/dx. To satisfy
the conditions at infinity, we take into account that the displacements and stresses are all
proportional to cos2a or sin2a, and choose the four stress functions as follows:

&= ¢*sin2a
T = rising
- (16)
Ty = 77COSQ
71 = rsinda

where ¢*, 7§ and 7% depend on r and 8 only. In eqn (16), the four stress functions are combined
to vield three independent functions. In view of (16), the solution of the displacement field
outside the two sphere can then be represented as

2uou = 2pou” + grad(y*sin2a ) + grad(xrsina + vrcosa + z€sin2a

+ 2y £isin2a) — 4(1 — vg) [rsina, Tcosa, (£ + &)sin2a. 7

where

n+32 n+

=318, a,H,P’(cosGHB' st P (cose,)}

= {An — T P Acosh) + A,' ,,H P ‘(cosB,)}

n+’

x x LR
£=3 G5 ~avt P (cosd), &=, Cn‘%&?TPnZ(COSQx}—
n=2

Since we have to satisfy the boundary conditions on the surfaces of both particles, we shall first
express (17) in terms of the coordinates (r, 6, a) with respect to spheres O and Oy, using
z = z,+ R and the relations between the harmonic functions referred to each of the two spheres
(7). Because the spheres are identical, the system is symmetric with respect to the plane passing
through the midpoint of the centers of spheres and perpendicular to the common axis of the
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system. Therefore, we obtain
An=(-D"A), B,=(-1"'B,). C,=(-D""'C,.

Thus, the problem is simplified and only the boundary conditions on one of the spheres have to
be satisfied. We shall now proceed with the solutions for the limiting cases of either rigid
particles or cavities.

In the case of rigid inclusions, the displacements on the surfaces of the spheres vanish, i.e.
u; =0, because of the symmetry of the problem. Upon satisfying this condition on the surface
of sphere O, we can then obtain([7] a set of equations relating A,. B, and C, which were solved
to give the first few terms of the series in p

_ 5(1_2V(]) 3 1_5V0 5(7+4V0)] 5 6
R e Tl P s el LR

= 5(n~4+4v,)

I _ n+1 n+3
An =50+ —dnr—2m® T O®")
P 25(1=2w) 5 15 5 125(1-2w) 8
By =550 P a5 Ty P TO0P)
l=_10(3_7V0) 4_ 60 6 7
B: =145, P “TT=1a5,° T0®)
I=_5(n+4_4nV0-6V0) n+2 n+4
Bx 3n+5—4nv,— 6y, P 0™
and
b_ 25 30 o
G = S T=Tdry ® 11145, P T O
Cnl 5(2n+ 1) pn+2+ O(pn+4)

" 2(3n +5—4nv, - 6vy)
where the superscript I denotes multiplication of the corresponding quantity by 2(4 — Svp)/ ue.

When the inclusions are cavities, the proper boundary condition becomes an; = 0, where n;
is the unit normal vector of the surfaces. In terms of the spherical coordinates of Fig. | we have

Op =0 =0 =10 atr=a.

After satisfying the boundary conditions, we again obtain another set of equations for the
coefficients A,, B, and C, which were solved[7] to yield the first few terms of the series in p

5(1=2w) 5

Al = l+m‘ﬁ +0(p%)
All= 5(n—=1)(n —4+4v) p™ O(pn+3)

2An*+n=2nve+ 1~ wp)
C25(1=2w) 530 4 125(1-2w)
75 P T T=55" T 75wy
_[300(1 — 2w 75(9—44v0+77u02)] 8 0
[ 7—Sv T 213=Twe) (1-5w)) P T OP)

"___5(23—771/0) 4_ 120 6 7

By = =237 ¢ 375 P TO0)

5(n* = n?+ 100w~ 12n + 170w~ 3+ 309) _nan ned
(n+2)(n*+3n —2nvy+ 3 -3wp) P 00"

Bll=-5

"n_
B, =
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and

cl - _ 25(1 - Twy) Pt - 60

6 7
T K3 B=Tn? TOP)

5@n+ 1)(n +4nvy— 6+ 6v,)

n+2 n+4
nt (P +In=2nve+3-3m)P OV

Cll

where the superscript Il denotes multiplication of the corresponding quantity by (7 — Svy)/ .
For this applied strain, the only non-zero component of the stresslet on the reference sphere of
radius a can also be evaluated to be

Sa1 = S12=8mwa’(1 — vy)B,.

6. ASYMMETRIC SOLUTION FOR €% = 885+ 83552
For this applied strain, the displacement and stress at infinity are

ui = x38;3+ 138
and

05 = 2uo(8:26j3 + 8:36)2).

In the new coordinates with the orlgm being at the center of sphere O, the above expressions
become

It

u” (gpzl—‘lziPll)Sina, Mom=(‘EPZII*"};‘PI")Sinosma-

3 3
=_(rpi_R ,)cosa
e (3P2 2PI siné (18a)
and
o= 4—’319 P,'sina, op=-— ZT P," sind sina,
5= polcosa ef 18b
O = 35 g Pa'cosa, ete. (18b)

Since the displacements and stresses are all proportional to either sina or cosa, the four stress
functions are chosen as

¥ = y*(r,0)sina, 1,=0,

7, = 75(r.6), 3= 75(r.0)sina.

Using the “multipole expansion” method, the displacement field outside the two spheres can
then be expressed as follows:

200 = 2pou” + grad(Ysina ) + grad(vr + zésina + z,£,sina) — 41 — 1) [0,7.(£ + £))sina ], (19)

where

,,+,P (cos8) + A, ,H,P (cosﬂ.)}

|| "
|IMB IIMB

n+2
{ T P (cos@)+ B, -WP (cosG,)}
C

,m P '(cos8). E G ,,HP '(cos8)).
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We shall again follow the procedures given in the previous sections by transforming the
origin to the center of the sphere O and satisfying the boundary conditions. However, unlike
the previous cases, there is no plane of symmetry in this system. Nevertheless, we find that the
solution of this case should be symmetric with respect to the midpoint of the centers of
spheres. Thus, we have

urb.a)=ufrm - 0,7 +a)

ug(r.0.a) = uglr.m— 0.7+ a)

Us(rba)=urm—07+a)
where the primes denote the quantities referred to the origin at O,. Therefore. we have
A, =(-1)"A,, B, =(-1)""'B, and C, = (- 1)"*'C,' which simplifies the two-sphere problem.
In order to solve for the unknown coefficients A,, B, and C,, we have to satisfy the
boundary conditions on the surface of sphere O. For the case of rigid inclusions, the

displacement has to be continuous and the net force and torque must vanish. Since on the
particle O,

total force = f oin;dS = 87a*(1 — vo)Bysis
and total torque = J' €N TonnindS = 87a%(C, ~ B,

we conclude that By =0 and C, = B,. This condition is necessary for obtaining a unique solution
for rigid particles, but not for cavities. The rigid particle displacement on sphere O under the
applied strain € = 8,,8;3 + 8;38;, can be expressed in the form

) —
(p V(p)32+an €1,

where the function V% and '” depend on p=a/R and the elastic moduli of the matrix.

After satisfying the conditions on the surface of sphere O, a set of relations for A,, B, and
C, was obtained which were solved in[7] using the method described previously. The first few
terms of the coefficients are

25(1+V0) 3 60 5 125(1+V0)2
250" "5, P Ha— S P

[150(18—23vo+ 14v5))  225(4 + wy)
4=Sw) (11— 14wg)  2(4-5pp)f

S{n+1)(4n +9-8nvo— 121) — (n+3) 2n + )] P

B|I=5_

] P+ 0(p)

B, = 303n + 5~ dnvg— 6o)
2(n+3)(n +4)(2n+1) n+4 n+5
In+5- 4'11’() 61/0 +0(p
C1’=Bl
ol = 5(2n*=5n+8nvy— 10+ 120 - Bn+ H2n+ D] .,
g 2(3n + 5 — dnvy— 60) P
2n+3)(n +4)(2n+1) P n+s
3n+5—dnve-~ top™)
and
I 40(3“‘21’0)] 4_ 12003 - 2v,) 6
4 [“” TS - 14w, P+ 0@)
o S0t [25(7—4,«,)2 8(1—5v0)] s 25(1+w) 6 7
A 350 P 209w T 45w, 2@—SutP TOW)
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Al= 5("2_2+2V0) "+|+[5(n+3)(n+5_4l/0)
(R TS, Sy P I 3n +8— 4nve— 10w,

_2An+2)(n*+2n—10+10p)
3n+2-4nvy -2,

]pn+3+ 0(pn+4)

where, as before, the superscript denotes multiplication of the corresponding quantity by
2(4 - Swo)/ po. The rigid particle displacement and rotation can also be calculated from the
relations By=0 and C, = B, to be

2 V(P) R < s+2 + + + 2 ; + 3
o= = o3 {40 Bt -+ CHBEED 2] et 1= 542 1)

and

1eQ? =~ (1= w0} >, {(s + B, + C,}p* 2.
s=1

Similarly, in the case of cavities, the first few coefficients become

_25(1+V()) 3 120 5_]25(1+V0)2 6

7_5V0 p +7—5V0p (7—51/0)2 p

151 + vy) 1200(]+V0)_30(l39+381/0+141/02)] s 0
[ T S T T=5nl  (1=Swa)(I3=Try |P TOW)

Bl'=-35

Sn(n +4n+2nve+31p) p.. 2n(n+ 3+ Q2n+1)

W= n+4 n+s
Bn = ni+3n—2nve+ 33, " NIt 30— 2nvat3—3u P +0(p"™)
cl =Bl

u_  SQr+6n’+2n—3+3wy) . 20(n+3)(n+4)Q2n+1) ., nes
Cn = n>+3n - 2nvy+3 -3, ni+3n-2nve+3-3u, F + 0™

and
43 = 2w) (124 Tp)
A{I:[ 130_7V0 0 +(7—8V0)] p4_+_ O(p6)
10(1 + vg)
T=2+ ) s
A 7= 5w, p +0(p’)

S(n=1)(n*=2+2w) ..

A”: 5
" nh+n_2nV()+l_V()

+ O(pn+3)

where, as before, AY. BY and C! are defined as A,, B, and C, multiplied by the quantity
(7—5w0)/uo. The stresslet for this applied strain can be calculated to give §;=
871’(13(1 - Vo)B](a,'sz; + 8;38,»3).

7. NUMERICAL RESULTS

With Poisson’s ratio of the matrix being chosen equal to 0.25, numerical calculations were
performed for an infinite region containing either two rigid particles or two cavities which
yielded the stresses along the centerline of the spheres and the displacement on the rigid
particles.

Generally, the stresses at any given point outside the spheres will be a function only of the
applied strain at infinity €, the position vector of the point x; (the origin being at the center of
sphere O), and the orientation vector y; of the two-sphere system. It is easy to show, moreover,
from the linearity of the problem, that when x; = r §;; and v; = R§;;, the stress can be expressed
as

05 = A 1€udij + A2€338; + A 1€8i38)3 + A€ — 1€d;) + As(iz€jn + 836 — 1€338)) + Ae€33(8:38;3 — 38;)
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where the A;'s (i = 1-6) depend only on R/a and r, and on the elastic parameters of the matrix
and the inclusions. To evaluate these coefficients, the same four systems (1a to 1d) have to be
solved. The results of the numerical calculations for the stresses are shown in Fig. 2-7 for the
section between the spheres, which is the region where the interaction due to the other sphere
is most significant. The stresses not shown in the figures are all equal to zero.

Similarily, the displacement and the rotation on the rigid sphere O can be expressed as

u;
j = A7€3 + Ag€nbis T Ao€idis

and
Q; = Aso€ia€,

(e being the well-known permutation symbol) where the coefficients A; — Ay, which are now
functions only of R/a, can be obtained from the solutions of systems (la), (1b) and (1d) and are
shown in Fig. 8.

As expected, the series solutions developed in the present work converge very rapidly when
the spheres are far apart. Thus, generally for R/a = 3.0, very accurate results were obtained
using n = 30 for the calculations of the coefficients A,, B,, C, and for the stresses. However, as
the spheres approach each other, the accuracy using the present technique decreases rapidly
and little improvement could be attained by increasing the number of terms used to n = 70 even
though the series no doubt remains convergent for all (R/a) > 2. Some of the computed stresses
on the surface of the cavities are shown in Table 1 for comparison with the exact solution
which results readily from the conditions of zero traction. Since the entries in the second, third
and fourth columns of Table 1 should read, respectively, —5, 4 and -2 for all (R/a) = 2, the loss
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Fig. 2. Stresses along the centerline of the spheres for the applied strain €5 = §;. The number beside each curve denotes
the value of R/a.
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I l f T T
5 2.2 RIGID INCLUSIONS
4+ .
3t 2.5 —
4 _
sbm
|rﬂ
N 2]
b _285\‘ .
bl
b
______ d)_,l
3
6
e
4 —-2
225 25 3 CAVITIES
! | ! R |
1.0 20 3.0

r/a

Fig. 7. Stresses along the centerline of the spheres for the applied strain €5 = 8,8 + 816;,.

10 ' | * T ' |
R
A— s *)‘G*E
R
0.8+ B—A; +Ag+ )‘9+ﬁ .
C —x7+%
D —X
06 © s

-02rp -

-06 I | 1 ] ! [
20 30 4.0 50
R/a

Fig. 8. The coefficients for the rigid particle displacement and rotation on sphere O. @, Present work: B, Shelley and
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Table 1. Comparison of the stresses on the surface of cavity, at the point 8 = & = 0, with the exact solution. Systems (a).

(b) and (d) refer to the applied strains (1a). (1b) and (id). respectively.

system (a) system (b) system (d)
@ q® e ®
R/a S%Sﬂ {n=40) 0—3%:-2 {n=70) cﬂp:ﬁ (n=50)

® (exact) -5 4 -2
6 -4.99995 3.998 -2.00027
S ~-4.9991 3.993 -2.00077
4 -4.9982 3.971 -2.0029
3 -4.972 3.777 -2.016
2.5 -4.833 3.132 -2.035
2.25 -4.556 2.284 -2.011
2.10 -3.626 1.485 -1.893

of accuracy with decreasing separation distance is clearly evident. Also for a given n, the
accuracy seems to depend on the form of the applied strain and on the properties of the
particles. Consequently, we conclude that the stresses shown in Figs. 2-7 are accurate only for

R

/a = 3.0. Also it should be noted that, in several cases, the stresses seem to have a singularity

at R/a = 2.0, but owing to the loss of accuracy in the numerical calculations for R/a 3.0, the
precise form of the singularities cannot be inferred without further analysis and/or calculations.

A

s shown in[6], however, the nature of the singularity for bulk quantities such as the stresslet

S; can readily be determined via a “lubrication-type’ expansion which becomes increasingly
accurate as (Rfa)—>2.
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APPENDIX
The coefficients M; are

- (1-8)y(n-1m2n - 1)
2AB(n — 1Y (3n —dnvg+ 2= 2p) + (n2+ n + 1 = 2nv,— vo)]

M= (1-B)2n+5)(n+1)(n+5-4vy)
T 2AB(n+ 1N (3n—4nvy+8—10w) + (1 + 51 +7 - 2nvy— Swp))

M,

_n=4+4y,

M= 1 M
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_n+l n=2+4y,
M=gaMt=— M
2B+ n+ 2, + 1+ 5,) (3n —dnvg+ 1 = 20) — Bn—dny, + 1-2v,) (07 + 1+ 2nve+ 1 + vg)]
Qr+DH2n+N[B(r*+n+2my, + 1+,)+(n+2)(3n—4dny, + 1 - 23,)]

_m+3 @2n+3)2n+ Da(l - B)

M= s M M"=2[ﬁn(3n-4nv0+5—6u0>+(n2+3n+3—2nuo—3yo)]
_n=3+4py, _nt2
M= Mo Ms=3, "3 Me

With the definition A% = A/(uoy:) and C* = C,/(uov1). €qns (14a, b) can be written as

AL =280+ > A% N+ Noph) + Y, CF p° (N3 + Nup + Nsp)
s=0 =1

Ck=- 2 AtpunuNs_z apﬁ"H(N'z""NxPz) (AD)
s=0 s=1
where

M=M|(s+n) N;=M2(s+"+2)
$ s

N3=M|(s+n)_M3<s+n—l) N4=M2(s+"+2)—M4(S+"+2)
§ s $ s

N5=‘M5(S+:+3) N6=M6(s+:+1>

N7=M(,(s+’;+l)—M7(s‘:") Ng:“Ms(S_}-:*'z)A

Substituting the expansion A% = Z A,,p" and C3= I C,.p" into eqn (A1) and equating the same powers of p yield
0

m=0 ms=
C,,o =0

m—n-2 m-n~1 m-n-3
Com =— 2 NbAsim—n-x~2)- z N7Cs(m‘nfsfl)_ 2 NSCs(m—HAiAJ)
s=0 s=1 s=1

and
AnO = 28:!0
m-n—1 m-n-3 m—n
Apm = 2 NI Asm-n-s-n+t Z NZAs(rn-n—x—!)+ 2 NJCs(mAnAs)
s=0 5=0 s=1

m-n-2 m=-n-4
+ 2 N4Cx(m—n—x—2)+ 2 NSCs(m—n—s~4)'
5=1 s=1



